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This is it. Newton’s law of universal gravitation. A surprisingly simple equation. Pure
and elegant. But what does it actually mean? Let’s break it down:

F' is the resulting gravitational force between two objects. It is always attractive. Its unit
is the newton (V).

F' is directly proportional to the masses of the two objects m; and msy (or, to be more
precise, to the product of the two masses). The unit of the masses: kilogram (kg), and
kg x kg gives kg?.

r is the distance between the mass centres of the two objects. (Even though r is often
used for the radius, this is not the case here. That a radius will pop up a little later below
is a coincidence.) Unit: metre (m).

r is squared and finds itself in the denominator of the equation. With that, F'is inversely
proportional to the squared distance r2. Therefore, this is an inverse-square law.

G (called ’big’ G) is the gravitational constant. It has the same value throughout the
entire universe. At least according to the best available evidence. And because of this
all-encompassing purview this law is called Newton’s law of universal gravitation.

N 2
G =6.67-101-"+ 2)
kg?

G is not to be confused with ¢g (little’ g), which we will get to know shortly.

The units of G look a bit unwieldy. They can be easily derived from the units of the other
parameters that go into the equation. Simply solve it for G using units:

G-kg-kg
Ne=—i )
N-m*>=G kg’ (4)
N 2
G="7 (5)

kg?



If you prefer SI base units', swap the newton N for its definition:
m
I1N=1 k;gs—2 (6)
And how does this come about? Simply recall how a force is defined: mass x acceleration.

F =ma (7)

And the units of m and a are kg and m/s? respectively. Therefore, G can also be
expressed as:

G=k U m*kgts? (8)

Newton presented his findings in 1686 to the Royal Society as part of his seminal book
"Philosphiae principia naturalis’ (typically called just ’the Principia’), first published in
1687.

Inverse-square law

One of the profound insights was the inverse-square nature of the law of gravitation. This
was actually discussed by serveral scientists at the time. Most notably, Robert Hooke?,
besides Newton one of the other titans of science in their time, mentioned in a letter to
Newton that he considered the inverse-square principle to be applicable to gravitation.
But Newton was the first to publish this train of thought. Newton was known to be
divisive figure, and Hooke is reported to have been less than amused.

Why was the time ripe? In fact, the inverse-square law is not as far-fetched as it might
appear at first sight. If you have a certain source of some force, and you assume that the
force emanates out in three-dimensional space in all directions, you can easily imagine
the force going out in ever larger concentric spheres. The surface area of a sphere is:

A = 47r? 9)

Evidently, the surface area increases with increasing radius, and specifically with the

squared radius r2. Therefore, any force going out from the centre gets geometrically

"diluted’. See Figure 1.

! International System of Units (SI)
2 The Robert Hooke of Hooke’s law, F' = —kz, which describes the force needed to act on a spring.



Figure 1: 'Rays’ of radiation or force emanate from a source in all directions. As the imagined
spheres around the source get larger and larger, the ’density’ of the 'rays’ decreases proportional
to the square of the distance from the source. (Image credit: Borb. CC BY-SA 3.0. https:
//commons.wikimedia.org/w/index.php?curid=3816716)

As the surface area increases with the squared radius r2, the intensity of the force going
out decreases with the squared radius 2. And this decreasing effect is accommodated for
by putting r? in the denominator of the equation. Leaving out the specifics of gravitation,
the relationship looks like this:

. : 1
intensity = — (10)
r

The effect of having a square in the denominator is remarkably pronounced:

r=1 r’=1 1/r?=1
r=2 r’=4 1/r?=025
r=3 r=9 1/rr=0.11

r=4 r*=16 1/r*=10.06

It is even more impressive as a plot (Figure 2):
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Figure 2: With increasing r, 1/r2 falls off precipitously.
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And exactly this mechanism applies to the gravitational force. As well as to another law,
Coulomb’s law (first published in 1785), which looks practically identical and determines
the force between two electrically charged particles:

F =k (11)

Big G

With the story of inverse-square law down, we have to tackle GG, the gravitational constant
already introduced above. It is a proportionality factor that relates the other quantities
to each other. As we have seen, its value is:

Nm?
G=6.67-10""—— 12
T (12)

A decidedly unwieldy number.?> And the thing is that Newton had absolutely no means
of knowing it. It can only be determined empirically. Therefore, someone had to come
up with a clever way of measuring it. His name was Henry Cavendish, and he did it more
than 100 years after Newton had published his Principia.

The Cavendish experiment

One of the striking features of Newton’s law is the fact that gravitation is a property of
every piece of mass, applying to everything from the tiniest particle to supermassive black
holes (where the gravitational force is so strong that nothing, not even light can escape),
and everything in-between. Still, on the scale of everyday (human) life there seems to be
only one form of gravitation, that of the Earth acting on objects on its surface. But, in
fact, every bit of mass exerts a gravitational force on every bit of other mass, from here
to the edge of the observable universe. So why don’t we bump into all kinds of physical
bodies all the time due to gravitational attraction? Because the force is, apparently,
exceedingly small in the usual cases where less than entire planets are involved.

3 Note that even though G is a universal constant, its number value is not universal at all. It is entirely
dependent on the units you want to use. If you prefer parsecs (pc, 1 pc = 3.0857 - 10'¢ m =~ 3.26
light-years) and solar masses (M) over SI units, then G = 4.30 - 1073 pe- MJ" - (km/s)?.

5



Consider this: With Newton’s law being

(13)

and two masses of, say, 100 kg each, and a distance of 1 m between their centres of mass,
what is the gravitational force between them? The calculation would be a most simple
one if only we knew the value of G. (Please ignore the fact for a moment that now G can
be looked up anytime and everywhere. In Newton’s time really nobody knew.) But G,
as mentioned above, is an empirical constant. It cannnot be deduced from other known
physical constants. It must be measured. Somehow.

Let’s do a thought experiment first. Obviously, the force between the two masses must
in any case be tiny. Pick a number. Why not 1 uN (= 107% N)? This is definitely a
really small force that is imperceptible to any of our senses. By putting these numbers
into Newton’s law and rearranging the equation, we get a most crude estimation of G.

Fr?2  1076.12 Nm?

G pu— p— p—
mims 100 - 100 kg?

(14)

But how on Earth can you measure a force on the order of 1 uN? Henry Cavendish had
an idea (or, to be more precise, he carried through an idea by geologist John Michell,
who died a few years earlier). He took a rod, stuck a weight on each end, attached a
wire exactly in the middle of the rod so that the weights were balanced, and suspended
everything from the ceiling with the rod and weights a bit above the floor. This weird
sounding contraption has even a name. It is called a torsion balance (Figure 3).

Torsion wire

—

Figure 3: Schematic of a torsion balance as used in the Cavendish experiment. (Image credit:
Chris Burks (Chetvorno). Public Domain. https://commons.wikimedia.org/w/index.php?curid=
2660162)
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First, this pendulum of sorts oscillated considerably, but the motion decreased until it
came almost to a standstill. Then, with utmost care as to not disturb the equilibrium
unduly, Cavendish moved two additional weights (denoted M in Figure 3) very close to
the weights on the rods. If there was a gravitional force between the stationary and the
suspended weights, they should attract each other, causing the rod to rotate a little bit.
And by measuring this angle of rotation and knowing the stiffness of the wire (resisting the
rotation), it is possible to work out the value of the attracting force, and, in due course, as
all the other parameters are known entities, the value of G. One can easily imagine how
excrutiatingly fiddly the experimental setup must have been. Even the tiniest air draughts
or vibrations would disturb the measurement. But Cavendish invested the better part of
a year. And he succeeded! He measured the force and worked out... the relative density
of the Earth to be 5.448 4+ 0.033 times that of water.

Wait. Weren't we supposed to determine G? Yes, we were. It is simply a matter of
reformulating the Cavendish result into our now more common terms, which turned out
to be:

Nm?
=6.74-107" —— 1
G =6.74-10 e (15)

With that Henry Cavendish got his result right within only 1 % of the currently accepted
value. Truly an amazing achievement. (And our own result from the thought experiment
above was off only by somewhat over one order of magnitude. Not that bad either.)

Mass of the Earth

Besides his law of gravitation, Newton came up with other smart ideas as well. One is
his second law of motion (also published in the Principia):

F=ma (16)

Force equals mass x acceleration.

Obviously, the law of gravitation and the second law of motion have something in common.
Both feature something concerning masses and describe forces. Let’s put them side by
side:

F =ma (17)

Now think of a falling object. Perhaps an apple. Or a banana. It falls due to the force
of gravitation and gets continuously accelerated. (We simply ignore air resistance (drag)
here.) Diligent experimentalists have established long before Cavendish a fairly good
value for this free fall acceleration, which even has its own name, g, or, ’little’ g:

a=g=981 ms? (18)



Couldn’t we just put the two laws together and see what happens? Say, m is the mass of
the banana, and M is the mass of the Earth.

Mm
mg =G = (19)
The banana m cancels out immediately, leaving:
GM
9="% (20)

Where from here? We have values for g, GG, and, actually also for r, Earth’s radius,
6371 km (= 6.371 - 10% m)?, therefore, we can solve for M:

r’g =GM (21)

_r’g (6.371-10%2-9.81

M
G 6.67-10-1!

=5.97-10** kg (22)

We have successfully calculated the mass of the Earth!

Little g

In order to 'weigh’ the Earth, above we have put the two law’s of Newton side by side.
Let’s do this again:

mims

F=G

2 F =ma (23)
On looking closely, we can see that these two laws have the same fundamental structure.
Here is what I mean: First, make the variable names a bit clearer by putting Earth’s mass
into the equation with a capital M and the odd object we are observing with a lower-case
m (as we have done above).

F =ma (24)

4 Please note that we are not so much interested in the radius of the Earth per se. It simply happens to
be the distance between the centre of the Earth and its surface. And in Newton’s law of gravitation,
only the distance matters.



Regroup the left equation:

M
F:G2m F=ma (25)
r
M
F:mG2 F =ma (26)
r

Intriguingly, the term containing the gravitational constant G, Earth’s mass M, and
Earth’s radius r looks like the acceleration a of the second equation. Let’s set them equal:

a= GM (27)

72

Now we plug in the known values of G, M and r, and out we get out the gravitational
acceleration g:

_GM _ 6.67-107'-5.97 - 10%

_ -2
r? (U (28)
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Therefore, the familiar gravitational acceleration g on the surface of the Earth is fully
determined by combining the gravitational constant G and the physical characteristics
(mass and radius) of the Earth.

Calculating g is fine, as long as we have the mass of the Earth. For reasons of practicality,
such a weighing experiment would prove difficult. As outlined above, we have to come
from the other direction and measure g experimentally instead.

One of history’s most notable thinkers before Newton was Galileo Galilei. Among his
innumerable other areas of interest, he also thought deeply about the nature of objects
accelerating downwards.

An obvious experiment is dropping an object from some known height and measuring the
time it took to hit the ground. Easier said than done. Why? Because things tend to fall
really fast. Let your cell phone slide from your hand and try to catch it before it smashes
into your tiled floor (leaving you with a cracked screen and, to make matters just that bit
worse, a cracked tile, too). Hurtling in the direction of the Earth’s centre, your phone’s
speed picks up remarkably briskly. With an acceleration of g = 9.81 ms~2 (or, in words,
9.81 metres per second per second), this is the velocity after the first few seconds:

t=1 v=0981ms!
t=2 v=19.62ms!
t=3: v=2943 ms!

Apparently, we have a pattern here. After every additional second, the velocity is higher
by 9.81 ms™! (or 35.3 km/h). A nice observation, but we want to derive this relationship
more formally.



Consider this:

a=g (29)

Looks unimpressive. But what is acceleration at its core? It is the rate of change of
velocity. If this sounds heavily like plucked directly from differential calculus, you are
absolutely right.

dv
With v for velocity and ¢ for time. Therefore:
dv
i 1
o =9 (31)

This is a differential equation. How can we solve it in order to get v? We have to integrate
it. Don’t panic. In this case here, integration (with respect to ¢) couldn’t be simpler®:

v =gt (32)

And this equation describes exactly the pattern we have shown above: With every second,
the velocity increases by the value of g. The table from just above now expanded:

t=1: v=gt=981-1=09.81 ms!
t=2. v=gt=981-2=19.62 ms™!
t=3 v=gt=981-3=2943 ms™!

While we are at it, let’s go one step further. Asking basically the same question as above:
What is velocity at its core? It is the rate of change of distance. Therefore, if we integrate
velocity, we get distance (s):

ds
ds
— =gt 34
i (34)
Integrated:
t2
s = 97 (35)

But what in this world has this to do with our original task of measuring g?

5 To make things a bit clearer, I deliberately leave out the integration constant.
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Everything. As it is technically challenging to measure acceleration directly, time (¢) and
distance (s) are way simpler to determine with good accuracy and precision. And as soon
as we have experimental values for ¢ and s, we only have to plug them into the equation
from above after solving it for g:

gt?

i 36
=2 (30
2s = gt* (37)

2s
g= tj (38)

Although there is still the nagging problem that free falling bodies accelerate really quickly
making measurements of time and distance a difficult undertaking. Just think about how
far an object will have fallen after only a few seconds. The equation for distance derived
above features an element that signifies clearly that things will get out of hand really
speedily: Time is squared. Here is a plot of distance over time:

120
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40

20

0 1 2 3 4 5
Time (s)

Figure 4: The distance travelled by a free-falling object increases with the square of time ¢
2
(s = —g; ).

After only 5 seconds, the falling object has travelled more than 120 metres! If only we
could slow things down so that we don’t need a skyscraper to toss an apple from. But, by
all means, we simply cannot reduce the gravitational acceleration down to more amenable
values.

Except, we can.
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Galilei's experiment

All we need is a plank of wood and some vectors. Galileo Galilei showed us how 400 years
ago.

The trick is this: The gravitational acceleration points straight down, to the centre of
the Earth. As such, this acceleration is a vector. It has a magnitude and a direction.
(You might already see where we are heading...) Any vector can be seen as the sum of
other vectors, or the other way around, a vector can be split up into constituent vectors
with different directions. If we do this with gravitational acceleration, we effectively can
reduce its magnitude to any value we want, from its nominal 9.8 ms~2 right down to 0.
We simply have to vary the angle of a 'falling” object from straight down to something a
bit more shallow. Ok, such a procedure contradicts the notion of free fall, but what comes
decently close to falling is rolling. And here we are: By letting a sphere or a cylinder
or something of similar shape roll down an inclined plane (e. g. a plank of wood), we
can redirect the gravitational pull and reduce it so that measuring time and distance is
much easier to achieve. Do this with care in a controlled setup, and you can determine
the value of Earth’s gravitational acceleration empirically: Galileo Galilei’s inclined plane
experiment. Let’s recreate it.

A fairly flat piece of wood that can be positioned at any desired angle is an IKEA shelf
board. As moving object I use a bolt with two washers acting as flanges on each end of
the bolt (Figure 5).6

Figure 5: This is my rolling stock, a 70 mm long bolt with a washer attached to each end. Rolls
remarkably well.

6 T have tried other cylindrical objects as well, but none of them came close to the bolt-washer solution.
Specifically, an aluminium bottle, quite precisely manufactured and rolling really smoothly, turned out
to be much more of the sluggish type. It rolled considerably slower, most probably due to a relevant
amount of air resistance.
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Distances are easily determined with a tape measure. So far, so good. But how about
getting precise time readings? You certainly could fit some light gate sensors to the board
and record the instances the object passes them using, say, a Raspberry Pi microcontroller.
(Thinking of it, T will definitely do this at some point.) But there is a far simpler method.
Use a camera and make a video of the rolling object. With this (and a video editing
software, e. g. DaVinci Resolve) you can precisely determine where the object is at any
time point, frame by frame.

Here is a schematic of my setup’s geometry with all the necessery dimensions:

Figure 6: L is the length of the board, and h the height of the block supporting the board on
one end. Given these two parameters, we can calculate the angle 6 (theta). s is the distance for
which we record the time it takes for the object to roll. The parameters a and g are calculated.

But how do we get from here to a value of g7 First, we work out the value of the
acceleration of the object as it rolls down the board. To do this we need the angle 6.

L =0.96m; h=0041m (39)

With this we can calculate 6. Time to get out some of the old and rusty trigonometry.
Remember SOH-CAH-TOA? As L, h and 6 form a right triangle, and with h being the
opposite and L the hypotenuse, we summon the sine here:

sin(0) = (40)

=
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To get the actual value of 0:

h 041
0 = arcsin (L) = arcsin (00096> = 0.0427 radians = 2.447 degrees (41)

Now we are ready to do the measurements. Place the flanged bolt carefully at the start
mark and let it roll down the inclined plane with the camera recording this experimental
spectacle. (I used the highest frame rate my gear could handle, 60 frames per second.
Higher would be better.) Repeat several times. In the video editing software, it is simple
to extract the time stamps, first when releasing the bolt and then when it passes the
second mark positioned at 40 cm. Calculate all the individual rolling time intervals and
then their mean (f,,cqn). Here is my result (after four valid measurements):

tmean = 1.4 5 (42)

In the previous section, we have already derived the equation that describes the distance
over time by integrating first acceleration and then velocity. Here again, in short:

a=g (43)
v =gt (44)
5= 92252 (45)

As we have the distance and the time, we can calculate the acceleration (let’s call it a
here, because g, in the sense of little g, is what we want to find out.

at?
= — 46
5= (46)
2s = at’ (47)
25
2-0.4 _
@ =——5 = 0.4082 ms™* (49)

Now for the crucial part. We have the actual acceleration of the flanged bolt rolling down
the inclined plane. How can we get the corresponding value of g?

14



Look again at the figure above. In addition to the first right triangle (concerning the
board), we have a second one formed by the acceleration a, gravitational acceleration g
and the angle 0. (Yes, geometry has it that this is exactly the same angle 6 that we
have observed between the flat ’ground’ and the inclined plane. Very handy.) The rest is
practically a walk in the park. Simply calculate g in its capacity of being the hypotenuse
in this right triangle.

sin(0) = ch (50)
a
= 1
g sin(6) (51)
04082 L

And this result, 9.563 ms~2, I find is a pretty good approximation of the true value of
9.8 ms™2.

0.7
—— Nominal acceleration

Experimental acceleration

Distance (m)
o o o o
w IS 3 o

o
N

©
o

0.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75
Time (s)

Figure 7: Comparison of nominal acceleration based on the true value of g and our experimental
result by plotting the rolling distance over time.

Experimental physics on the kitchen table.

It is worth reitering that an object rolling down an inclined plane is, in principle, the
same as the object being in free fall. The mechanism and the equations are exactly the
same. Only the acceleration is reduced from its maximum of ¢ = 9.8 ms=2 to a lower
value depending on the angle of inclination.
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Surface gravity

Now we have everything neatly derived. Cavendish determined big G, we confirmed little
g. In addition, we have shown the close relationship between two of Newton’s most
important laws, the law of gravitation and the second law of motion:

G
=" p (53)
T

If we wanted to calculate the gravitational force acting on a mass of 1 kg, we could use
both laws and get the same answer:

Gmims  6.67-10711.5.97-10% - 1
F= = —98 N 4
r2 (6.371 - 105)2 08 (54)

Or simpler:

F=ma=1-98=98 N (55)

Please ponder for a moment how tiny this force is. Whereas the mass of the entire Earth
(5.97-10?* kg) is needed to pull down a mass of 1 kg by way of gravitation, you can most
easily overcome this force with your arm, simply by lifting 1 kg up. Earth’s mass vs. your
arm. And your arm wins. Pretty amazing.

As Newton’s law of gravitation is universal (as is G), it is a simple task to calculate the
gravitational force exerted on a mass of 1 kg on another celestial body, say, the Moon
(with a mass of 7.342 - 10*? kg and a radius of 1.737 - 10° m):

Gmyms  6.67-10711.7.342.10%2. 1
F = = =16 N 56
r2 (1.737 - 106)2 (56)

The Moon’s gravity on its surface is about 1.6/9.8 ~ 1/6 that of the Earth.

Surface gravity depends, crucially, on the radius of the planet or moon in question as
the radius determines how close another object can come to its centre of mass. Let’s
make a thought experiment here. What if we compacted the Earth down to the density
of a neutron star? The mass would remain the same, but the radius, and with that the
distance to an object on its surface, would be much shorter.

A good neutron star has a density of
d=48-10" kgm™ (57)

Compare that with Earth’s meager density of about 5,500 kg m=2 (= 5.5-10% kg m=3, or
14 orders of magnitude less than the neutron star).

Density is simply mass divided by volume:

d =

<I3
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Therefore, given mass and density, we can rearrange the equation for V:

v=" (59)

With the values we already know, a compacted Earth has a volume of:

5.97 - 1024 o
The volume of a sphere is:
4
V = §7T7’3 (61)

Solved for the radius:

T »

And with the new volume of the Earth plugged in:

53+ 1.24 107
=" =1436 m (63)
47

Crushed down to the density of a neutron star, the entire Earth would have a radius of
only 143.6 m! Consider this for a moment! What would the surface gravity be (for 1 kg
of mass)?

mime 11 5.97 - 1024 -1 10
=667-100" ———5—=193-10" N 64
r2 (143.6)2 (64)

F=G

Same mass, much shorter distance, and the surface gravity shoots up from our standard
9.8 N to more than 19 billion N. Pretty inhospitable there. But a direct consequence of
the inverse square law in action.
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Gravity at a distance

Right from the start we stated that every bit of mass in this universe exerts a gravitational
force on every other bit of mass. As humans we are plainly unable to sense anything of
that directly apart from the usual pull of Earth’s gravity. Let’s check this observation.
Imagine yourself standing on the high street of Stratford, New Zealand. Looking to the
west you see Mount Taranaki:

Figure 8: Mount Taranaki, North Island, New Zealand. A pretty symmetrical cone-shaped
volcano, which makes calculating its mass a lot easier (the hump on its left flank in the image
notwithstanding). It is worth looking it up on Google Maps. An impressive sight. (Image credit:
Public domain. https://en.wikipedia.org/wiki/Mount_Taranaki# /media/File:Mt_Taranaki.JPG)

What is the amount of gravitational force with which Mount Taranaki attracts you (and
vice versa)?

We can approximate the volume (V') of Mount Taranaki as that of a cone:

r’mh

3

V= (65)

With estimates for the radius at the base (r = 7000 m) and a prominence above the plain
as height h = 2300 m:

B 7000% 7 2300

v 3

=1.18-10" m? (66)
Then we assume a rock density of p = 3000 kg m =3 to get the mass:

m=V-p=118-10"-3000 = 3.54 - 10" kg (67)

With an approximated distance between Stratford and the mountains centre of gravity of
20 km and you having 70 kg, everything is ready to be plugged into our law of gravitation:

F=d
72 200002

=0.0041 N (68)
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Even though Mount Taranaki comes with the hefty mass of 354 million million kg (no
typo), it exerts only the force of a measly 0.0041 N on you (equivalent to the weight of
something with the mass of 0.0041/9.8 = 0.00042 kg = 0.42 g). This is the reason why
you don’t have to worry about getting knocked over when coming close to even a large
mountain.

In contrast, on the celestial stage, the involved forces tend to be somewhat stronger.
Take the Earth-Moon system as an example. As it is the case for every moving object,
the Moon would shoot off into the vastness of space in a straight line if the Earth would
not force it into its orbit by way of gravitation:

GMEgrthMitoon  6.67-10711.597-10%.7.34 - 1022 20
F= = =198-10° N 69
r2 384, 400, 0002 (69)

Unsurprisingly, this is an unfathomable amount of force that is needed to keep the Moon
in its tracks in Earth’s orbit. But the Earth is not the only celestial body in the vicinity.
What is the gravitational force exerted by the Sun on the Moon? Ok, the Sun is vastly
heavier than the Earth, but it is also much farther away. Can it have any effect? (For our
purposes here, we can approximate the Sun-Moon distance with the Sun-Earth distance.)

GMgunMproon  6.67-1071.1.98.10%.7.34-10% 00
F = = =4.33-10"" N 70
r2 (1.496 - 1011)2 (70)

It can. The gravitational force between the Sun and the Moon is even a bit greater than
between the Earth and its dear companion. After all, the Sun has to keep them both in
its orbit.

7 Please note that the Moon, despite its impressive size in the sky, has only about 1.2 % of Earth’s mass.
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Conclusion

Gravitation is the dominating force of the universe. Every objects attracts each and every
other object, determining the structure of galaxies and keeping our feet on the ground.
Galilei and later Cavendish provided empirical data, and Isaac Newton pulled all together
into such a deceptively simple but at the same time most powerful equation, Newton’s
law of universal gravitation:

(71)

Until a very smart person comes along and tells us that gravitation is not a force after all.
Gravitation, in this alternative view, is more a deformation of space and time (bundled
up as spacetime). This model goes by the grand name of general relativity, and the
wizzard who had all these insights was, you knew it, Albert Einstein. But don’t throw
out all the preceding chapters. Even though general relativity was confirmed ever since
its publication in 1915, Newton’s law of gravitation is still the valid model in most of the
circumstances, at least as long as you travel considerably slower than the speed of light
and avoid the occasional black hole in your path.

Figure 9: Sagittarius A, the supermassive black hole at the centre of our galaxy. (Image
credit: EHT Collaboration. https://www.eso.org/public/images/es02208-eht-mwa/, retrieved 28
December 2024)
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University Press 2013
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MacDougal DW. Newton’s gravity. Springer 2012
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